Variation of Cholinesterase-Based Biosensor Sensitivity to Inhibition by Organophosphate Due To Ionizing Radiation
نویسندگان
چکیده
A cholinesterase based biosensor was constructed in order to assess the effects of ionizing radiation on exposed AChE. Although the primary objective of the experiment was to investigate the effect of ionizing radiation on the activity of the biosensor, no changes in cholinesterase activity were observed. Current provided by oxidation of thiocholine previously created from acetylthiocholine by enzyme catalyzed reaction was in a range 395-455 nA. No significant influence of radiation on AChE activity was found, despite the current variation. However, a surprising phenomenon was observed when a model organophosphate paraoxon was assayed. Irradiated biosensors seem to be more susceptible to the inhibitory effects of paraoxon. Control biosensors provided a 94 ± 5 nA current after exposure to 1 ppm paraoxon. The biosensors irradiated by a 5 kGy radiation dose and exposed to paraoxon provided a current of 49 ± 6 nA. Irradiation by doses ranging from 5 mGy to 100 kGy were investigated and the mentioned effect was confirmed at doses above 50 Gy. After the first promising experiments, biosensors irradiated by 5 kGy were used for calibration on paraoxon and compared with the control biosensors. Limits of detection 2.5 and 3.8 ppb were achieved for irradiated and non-irradiated biosensors respectively. The overall impact of this effect is discussed.
منابع مشابه
Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents.
We report herein a whole cell-based amperometric biosensor for highly selective, highly sensitive, direct, single-step, rapid, and cost-effective determination of organophosphate pesticides with a p-nitrophenyl substituent. The biosensor was comprised of a p-nitrophenol degrader, Pseudomonas putida JS444, genetically engineered to express organophosphorus hydrolase (OPH) on the cell surface imm...
متن کاملRespiratory mutant and liquid holding recovery inhibition in yeast cells
Background: Cell ability to recover from radiation damage is of great relevance in cancer treatment. It is often believed that the inhibition of cell ability to the liquid holding recovery (LHR) may be an indicator of the overall suppression of cell ability to recover from potentially lethal radiation damage. However, the literature contains no experimental evidence whether the LHR inhibition m...
متن کاملارزیابی میزان تماس کارگران شاغل در گلخانه با سموم آنتی کولیناستراز از طریق پایش بیولوژیک
Background and Aims: Organophosphate compounds are the most popular insecticides with the widespread application in pest control. These toxic compounds interfere with the blood cholinesterase and inhibit the cholinestarse activity.Measurement of Cholinesterase activity is widely used for diagnosis of poisoning and adverse effects caused by pesticides. Green-house workers are one of the import...
متن کاملA New Changeable Bioreactor for Detection of Organophosphate in a Flow-Through System
A flow-through biosensor consisting of a fixed bed bioreactor was employed to detect the insecticideparaoxon. Based on the inhibition of organophosphorous insecticide to the enzymatic activity of acetylcholinesterase (AChE), using paraoxon as a model compound, the condition for detection of the insecticide were optimized. The influence of enzyme loading on the packing surface was studied ...
متن کاملBiological monitoring of genotoxicity to organophosphate pesticide exposure among rice farmers: Exposure-effect continuum study
Background: This study has used biomarker of exposure-effect continuum to examine the biological characteristics of organophosphate (OP) toxicity and its genotoxic effect among rice farmers. Materials and Methods: A cross-sectional study was conducted among 160 pesticide exposed rice farmers and 160 adults from the fishing village as the unexposed group. They share the common socio-economical ...
متن کامل